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Preface

Chance-constrained programming can best be described as

an attempt to optimally allocate resources in situations

where the decision maker is faced with risk and uncertainty.

It can be a valuable tool for the decision maker since it

gives him direct control over some of this risk. In wrling

this thesis, I have attempted to give the analyst a review of

the fundamental theory of chance-constrained programming.

The thesis, however, should not be considered a literature

search or a review of all the developments and applications

of this theory, but it should give the analyst a thorough

introduction to the subject, one which can be used to solve

most problems that an analyst might encounter in this area.

However, this thesis does introduce a new distribution

free approach to chance-constrained programming which was

developed by R. A. Agnew. I would like to express my personal

appreciation to Dr. Agnew for sharing these developments with

me and also for the aid he has given me in the preparation

of this paper. However, I want to point out that any errors

which might appear in this thesis are solely the responsi-

bility of the author.

Finally, I would like to express my sincerest appre-

ciation to my wife, Dianne, for enduring the neglect that

resulted from this effort.
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Abstract

This thesis is concerned with the development of

certainty or deterministic equivalent nonlinear programming

models from chance-constrained programming models. It

contains a review of some of the historical developments in

this area which were made by Charnes and Cooper, Kataoka,

Miller and Wagner, Hillier, and Sengupta. The thesis intro-

duces a new, distribution free approach to chance-constrained

programming which can be used with both single and joint

chcnce constraints. Finally, the distribution free chance-

constrained model is applied to the economic problem of input-

output analysis.
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Chapter I

Introduction

Background Information

Throughout history, mankind has been concerned with the

problem of optimal allocation of limited resources amongý

competing activities. The problem has been widespread. Gen-

erals have asked the question of whether their chances of

victory would be greater if ti y initially committed, a

division to combat or if they held that division in reserve

to be utilized at a later stage in the battle. Farmers have

wondered whether their return would be greater if they planted

only corn, only wheat, or some mix of the two crops. Like-

wise, entrepreneurs have continually searched for more effi-

cient ways of production in order that they might increase'

profits. To aid man in his search for answers to these

questions, the sciences of economics, operations research, and

systems analysis were developed; and it is from these sciences,

that man has gotten the very valuable tool of linear pro-

gramming.

Linear programming was initially developed by George B.
qif

activities of the U. S. Air Force. In any operating period

the Air Force has many activities such as logibtics, training,

maintenance, and operations which have to be coordinated in

Ii
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order to achieve specific goals., Thus linear programming

addresses the problem of setting optimal levels for these

activities. Mathematically., the linear programming model is

normally formulated in the following maner:

maximize E x

subject to ab iE i, 2, ..2 , m

x j 2 0; J = I, 2, .. ,

where-x is the J-th decision variable, i.e. the level that

the decision maker chooses to set for the j-th input, product,

or the J-th component of whatever the decision maker controls,

and the oi, aij. and. bi are known constants. Such a model,
I'I as formulated, might carry the economic interpretationi that

a firm which utilizes m separate production processes in

order t6 produce n difrerent products is attempting to maximize

total receipts from the sale of these products subject to the

constraint that each production proces' is not operating

above dapacity. Here the decision maker is attempting to

set optimal levels of product output. Dantzig developed the

: simplex algorithm to solve this linear programming problem;

and since that time the model has satisfactorily been applied

to not only production problems, but to problems in the areas

of transportation, agriculture, and dietetics, just to name

! ° a few .

Although the linear programming model has been concep-

tually useful for planning in many areas, it has a major

drawback. The coefficients , a3 and b. are assumed to be

known cohstants, whereas, in reality, they may neither be

2
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known nor constants. Since the model is utilized to select

some future course of action, the estimates on these coef-

ficients would be based on some prediction of future conditions.

Information used in this estimation may not be sufficient to

, accurately predict the future values of the coefficients.

Furthermore, the values of the coefficients could be greatly

influenced by random events which are impossible to predict.

This leads to the problem where some or all of the coeffi-

cients are actually random variables. One approach of

handling this problem would be to obtain estimates of the

means of the random coefficients and to use these estimates

in the linear programming model. Certainly such an approach

will give the decision maker some insight into his problem,

but it completely ignores the random nature of the problem

and suppresses the uncertainty that the decision maker faces.

However, under this approach a good analyst would perform

sensitivity analysis on the model; and this would give the

decision maker some insight into the uncertainty he faces.

But it can be safely assumed that as the number of random

elements increases, the sensitivity of the solution to the

model also increases, thus decreasing the value of the solu-

tion to the decision maker. However, there are other ap-

proaches that analysts can take when attempting to apply the

linear programming model to situations possessing a high level

of uncertainty.

Several approaches to the problem of mathematical pro-

gramming under uncertainty have been developed. One approach,

3.-
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developed by G. Tintner, is called "stochastic linear pro-

gramming" and deals with the probability distribution of

max E c xj. A second approach, developed by G. Dantzig,

is called "linear programming under uncertainty". This

approach has successfully been applied to multi-period prob-

lems where a decision is made each period after the values

of some of the random elements become known. A third approach

was developed Oy Charnes and Cooper and is called Chance-

Constrained Programming. It has the mathematical formulation

max f(xl, ... , Xn)

subject to p[Zj n1 ax bi] • 1 - i; i = , 2, ... m

xj J 0; J = i, 2, ... n,

where again x is the J-th decision variable, and the aiJ

and bi may be random variables. In this case the objective

function, f(x 1 , feet Xn ), is an attempt to quantify the de-

cision maker's goal in terms of the decision variables. Also,

P[Zj= ! aijxj biJ ? 1 - mi is interpreted to mean that the

probability that the i-th constraint is violated is less than

c., an appropriately chosen number between zero and one. If

f(xl, ...9 x ) is a linear function, one can see that then
formulation of the chance-constrained model closely resembles

the linear programming model, but it changes the i-th con-

straint from a linear inequality into a probability statement,

thus recognizing the uncertainty associated with the problem.

There is an important distinction between the chance-

constrained model and most other constrained optimization

problems since the violation of the constraints is permissible

4
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in the chance-constrained approach. One may question the

merit of allowing a constraint to be violated, but it can be

demonstrated that this is a valuable practice when dealing

with problems whioa contain elements subject to random

variation. To illustrate this point, suppose one is pro-

ducing a product with the constraint that the random demand

for that product must always be met, i.e., demand is met with

probability one. But such a policy says that the probability

that production exceeds demand is one or very close to one,

and if the variance of this random demand is large, over

production may also get large causing storage costs to rlse,

thus cutting into profits. The chance-constrained pro-

gramming approach to this problem would permit the decision

maker to specify the level of risk of not meeting demand that

he is willing to face. This is done-by choosing an appro-

priate ai, It is in this light that one sees the value of

using the chAnce-oonstrained programming model, since it

forces the decision maker to recognize the risk he faces and

allows him to choose the level of risk he feels appropriate

for the problem.

Consider again the i-th chance-constraint which is

written as

P[j n ! bi i I -= 1 aijxj" - "

Since the aij and bi may be random variables (it is assumed

that there is at least one random variable in each chance-

constraint), it is clear that the chance-constraint cannot

be directly utilized in solving the chance-constrained

5
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programming model. It is then necessary that one transform

the chance-constraint into a deterministic equivalent

constraint which is free of any random variables before the

model can be solved. Most of the literature written in this

area has addresscd this problem, but in many cases, the

authors made assumptions about the probability distributions

of the random variables aij and bi. Th!se assumptions have

limited the applicability of their deterministic equivalent

model.

The Problem

J. K. Sengupta and S. M. Sinha have utilized the

Chebyshev inequality in chance-constrained programming. The

inequality has a particularly useful characteristic in that

it holds regardless of the probability distribution of the

random variable being measured. The purpose of this paper

is to utilize the Chebyshev inequality to develop deter-

ministic equivalent constraints for single chance-constraints

and joint chance-constraints, a concept developed by Miller

and Wagner. Thi model developed will be general in that it

will allow any of the coefficients to be random variables

with unknown probability distributions. The model will then

be applied to the economic problem of input-output analysis

to demonstrate its usefulness to the decision maker.

Overview

Chapter II of this paper will illustrate some of the

approaches ',hat other authors have ;aken in solving the

6
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chance-constrained programming model. The assumption will

initially be made that the probability distributions of the

random variables involved are known. Then deterministic

I equivalent constraints will be developed. This assumption

will then be relaxed. Also, Miller and Wagner's concept of

1 1a joint chance-constraint will be reviewed. Finally, J. K.

Sengupta's approach to chance-constrained programming which

utilizes the Chebyshev inequality will be reviewed.

Chapter III will extend the use of the Chebyshev

inequality to give deterministic equivalent constraints

which can be used to solve the most general case of the

chance-constrained programming model which has both single

and joint chance-constraints.

Chapter IV will then apply the results of chapter III

to the economic problem of input-out-ut analysis. The

input-output analysis model will also be modified to show

how it might be of use to the Air Force and other Department

of Defense planners,

itl

7



GSA/SMI/72-15

Chapter II

Historical Developments

The chance-constrained programming model is normally

formulated as

max f(xl, ... ,x

subject to PEL = 1 ajxj bi] a 1 - i = 1, 2, 9.., m

x > 0 j = 1, 2, ... , n, (. )
where the x are the non-stochastic decision variables, the

aj andbi may be random variables, and the is an appro-

priately chosen number which lies between 0 and 1. The i-th

probabilistic constraint allows that constraint to be vio-

lated with probability mi; hence a, represents the allowable

risk which the decision maker chooses to face. This formu-

lation additionally requires that the n decision variables

all be non-negativ*a, which is generally the case for most

economic problems. However, one could easily restrict the

feasible region of choice for the decision variables by

including other non-probabilistic constraints in the form of

linear inequalities, where constants and the coefficients of

the decision variables are non-t;tochastic.

As formulated, the chance-constrained programming model

cannot be directly solved, but each of the probabilistic

constraints must be reduced to certainty equivalent or

deterministia equivalent constraints. This is accomplished

8
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by using the means and variances of the random variables

given in the chance-constraint and developing certainty

equivalent constraints which are usually in the form of non-

linear inequalities. Before investigating some of the

approaches taken by various authors in this area, a few

words should be said about an appropriate choice for the

objective function, f(xl, ... , xn).

The Objective Function

In choosing an objective function to be used in the

chance-constrained programming model, an analyst should

attempt to quantify the decision maker's major objective.

This usually gives some mathematical function in terms of

the decision variables, xl, ... , xn. It is seen in the lin-

ear programming model that the objective function is given

by

max j =1 cjxj,

and this objective function could carry the interpretation

that the firm is attempting to maximize receipts from the

sale of goods produced. Here cj represents the market price

for product j. This certainly appwars to be a logical

choice for a firm's major objective. Clearly, this objective

function can be utilized in the chance-constrained pro-

gramming model. However, since the firm is operating in an

environment of uncertainty, it appears quite likely that

some of this uncertainty will be encountered in the market;

hence each price, cj, could very possibly be a random

•_z_ 9
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variable. It would be ambiguous to deal with max En a xi J

when the aj are random variables. As is the case with the

probabilistic constraint, one must develop a certainty

equivalent expression for receipts in order to use maximum

"receipts as the objective function. Since receipts are nor-

mally a linear function of the decision variables, and

programming algorithms using a linear objective function

deal primarily with a relative weighting of the decision

variables, it seems logical to utilize the expected value of

receipts as the appropriate objective function. Since the

decision variables are assumed to be non-stochastic, this is

given by

3 = 1 j = 1J.'

where E(cj) is the expected market price for product J. The

chance-constrained programming model-which uses this ob-

Jective function is referred to as the "E Model", a term

given by Charnes and Cooper, the developers of the model.

Use of the E Model will be satisfactory if the decision

maker or the firm has a linear utility for wealth, but, in

reality, most individuals have a diminishing marginal utility.

The logarithmic utility function is a good example of this.

Therefore, if the decision maker does not have a linear

utility for wealth, the analyst must use some function which

represents the expected utility of profits as an objective

function. Since profit is a random variable whose distri-

bution may be known or unknown, it might be difficult to

obtain an expression for the expected utility of profits.

10
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However, due to the arbitrary nature of most utility func-

tions, it would be permissible to use a tractible 1 wer

bound as the objective function in place of the expected

utility function, H, A. Agnew, [21 and [3], has developed

such bounds, and they depend only on the mean and variance

of random profits. The chance-constrained programming model

which usea a bound for the expected utility of wealth can

readily be applied to the problem of portfolio selection

[1]9 [25], and [26].

Suppose the decision maker is more concerned with

minimizing the random fluctuations of receipts, as opposed

to maximizing expected receipts. In this case, the analyst

would use min Var (En = 1 ) as the objective function.
1 c Jx

Fortunately, this variance function is a positive semi-

definite quadratic form with respect-to the decision varl-

ables, which means a global minimum can be found for this

function if the decision variables are confined to a convex

set. The chance-constrained programming model which uses

this objective function is normally called the "V Model', a

term originated by the developers of the model, Charnes and

Cooper. Realistically, one would not usually see the V

Model used without an additional constraint that expected

receipts are greater than some specified level that the

decision maker feels is satisfactory.

Charnes and Ccoper developed another chance-constrained

programming model which they called the NP Model'. In this

case the decision maker determines some satisfactory level

11
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of receipts, call it Z, and then attempts to maximize the

probability that receipts are equal to or greater than this

level. The authors call the utilization of this model

satisficing, a term developed by H. A. Simon, Mathematically

this can be expressed as

max P[En cx 2jJ.

This model may take on a different interpretation if one

considers Z to be the minimum acceptable level of receipts

or, as some authors call it, the "disaster level". In this

case, the objective is to minimize the probability of ruin or

m in = i c x3 <

Neither of these expressions Pan be used as a deterministic

objective function to solve the model. If one defines the

functions

AlO = j= i E(c )X yand co =Var ( = i x )
it can be shown that it is mathematically equivalent in both

these cases to maximize the following certainty equivalent

objective function

provided that the cumulative distribution function of
c x - Al )/a is strictly monotonic. This objective

Jl ji o o

function would be utilized if the decision maker's major

objective is to minimize the risk he faces and is usually

referred to as the safety-first approach.

Along these same lines, Kataoka [22] proposed a slight

modification to the above model which has also become known

as the safety-first approach. This model is formulated as

12
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max
subject to a jxj • ] .

This can be shown to be mathematically equivalent to maxi-

mizing

•o+ F-aco

where F is the cumulative d:strblion function of the

random variable (ElY1 c - )/a

j = 1 g

It can be clearly seen that the analyst has a great

deal of flexibility in model,, the decision maker's atti-

tude by using one of the above objective functions and using

others to make realistic constraints.

Development of Deterministic Constraints

Having chosen an appropriate objective function, the

analyst must now transform the probabilistic constraints

given in the chance-constrained proga.amming model into deter-

ministic or certainty equivalent constraints. Consider the

i-th constraint from (1), which is given by
p[,n = ijxj ýS bi] ýý 1 - ai.

Let = = n - bit ) = E(y1 ), and c,2 = Var (yi)Le Y E =1 aijxj '

Remember that ui and ci are nonstochastic functions of the

decision variables. Assume that there is at least one

random variable in each constraint, which means that c > 0,

and that the random variable y, has a known probability

distribution with finite mean and variance. Using these

assumptions the model can be transformed into the following

deterministic equivalent model*:

*See Appendix A for the mathematical development.

13
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max f(xI, ... n

subject to ai + K, _ a vi 0

v 2 > o 1 , 2, ... , m

Xc i =0, 2, ... , (2)

where p and o are defined as above and

K1 . a - 1 (1 - ai);

F1 represents the cumulative distribution function of the

random variable (y. - Pil)/i" When one utilizes either the

E Model or V Model objective function, (2) yields a convex

programming problem, and there are algorithms available to

solve this problem. If one utilizes the P Model objective

function, the problem is not quite as tractible. Remember

that the certainty equivalent objective function for the P

Model is given by max (pc " Z)/a where A = E(c n 0 x

and a Var (En cx) both functions of the decisionan 0 = i J

variables. Utilizing this, the deterministic equivalent for

the P Model chance-constrained programming model becomes:

max v /w
0 0

subject to go - - v0 a 0

0 0

vi_ O

Vol Wo 00

x >0 J =is 2 n. (3)

14!
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In this case the objective function v /W is noither
0 0

concave nor convex. But the problem can be solved using

fractional programming techniques, and as a consequence of

the theory in this area, a local maxima will in tact be a

global m:axima for linear fractional functionals.

If the random variables, all, ... , aSIn, ib, have joint

normal distribution, the value for K can be tound In

the cummulative tables of the standard normal variate. How-

ever, if the random variables in each constraint have arbi-

trary distributions, Y. may still be approximated by the

normal distribution since some version of the Central Limit

Theorem may hold. This theorem holds under weak conditions

for independent random variables and under stronger condi-

tions for dependent random variables*. Suppose the: distri-

bution of Yi is not known and the Central Limit Theorem'

cannot be applied to y.. Hillier [181 suggests using the

one-sided Chebyshev inequality which gives [(1 - )lCl

as an upper bound on K1 . C L and this value can be used in

the deterministic models (2) and (3).

Joint Constraints

The concept of a joint chance-constraint was first

introduced by Miller and Wagner [24]. In this case the

model is formulated as

*For a survey of conditions under which the Central Limit
Theorem holds, see Hillier, [20].

15
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I max f(xl, ... , xn)

subject to P nm a b 1"i ~ ~ ~ : = 1 =1 x J • >

x 0 J = 1, 2., .. , n.o

In this formulation, all of the chance-constraints from (1)

are joined together intlo one joint constraint. This formu-

lation carries the i~iterpretation that the probability that

aby of the m constraints is violated is less than a, an

appropriately chosen 'number between zero and one. In their

development, Miller and Wagner first assume that all the a13

are non-stochastib ar•4 that 'bi. and bk, i • k, are stochas-

tically independent random variables with known, continuous
FJ

distributions. This implies that the joint chance-constraint

,, qan be represented as

1 -- i =1 a1 jxj . 'i] I = P[L=O ajxj bi].

Letting Fi(.) represent the cumulatIve distribution func-

tion of the random variable bi, they define

Gi(bi) = . - Fi(bi).

Their model can then be expressed as thb following nonlinear

programming problem:

max f(xl, ... , xn)
subject to -vj + a x < 0 i 1, 2, ... , m

3= iiJj
m

x. >0 J=. , 2, ... ,n.

A Notice in this case that vi is unconstrained in sign, and

the authors remark that for computational purposes either

"-vi+ ai ax 7 =0 oriT = 1 GI(VN) I - a, but gen-

erally not both. If =I G.G(v ) is a concave function,
e n hi=i 16

III 16
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then a global optimum can be found by using some nonlinear

programming algorithm. The major portion of Miller and

Wagner's paper addresses the question of when um G (V

is concave. They could not develop conditions which are

sufficient for n (I Gi(vi) to be concave; however, they

were able to determine that it will not be concave when all

the b have normal, gamma, and uniform distributions. But

if one makes the following transformation

= 1 in Gi(vi) • in (1 - (.),

the constraint defines a convex region when the distribution

of each bi Is uniform or normal. This transformation also

works for the gamma and Weibull densities, when their para-

meter 9 is greater than one. In this case the modiel is

formulated as

max f(x 1 , .. , xn)

subject to -vi + L = 1 aijxj < 0 1 = I, 2, ... , m

= 1in G(v) in (1 c-)

x. • 0 j = 1, 2, ... , n.

The above arguments can be directly applied to the case

where one has several joint constraints if each constraint

appears in only one joint constraint; that is, there is no

constraint, 2 a•j=1 a b., which appears in more than

one joint constraint.

Miller and Wagner also consider the case where all the

aij have normal distribution and the bi are non-stochastic.

Again the assumption that all random variables are stochas-

tically independent is made. Let y. = = I al x where

I7
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Ai - E(yi) and oGi = Var (y,). In this case, the joint

constraint becomes

PA. + V il > bi = 1, 2, 1.., m

1 In G(vi in (1 -)

where G(v1 ) 1 - F;'(.) is the cumulat-,ve distribution

function of the standard normal variate. Clearly, these

constraints do not define a convex region, so any algorithm

which solves this problem may give only a local optimum and

not a global one.

Safety-First Approach to
Chance-Constraned Programming

An approach to chance-constrained programming is avail-

able in the safety-first principle which is best described

by A. D. Roy, [28], when he said, "...it is reasonable, and

probable in practice, that an individual will seek to reduce

as far as is possible the chance of such a catastrophe

occurring.u Roy defines a catastrophe as an event where an

individual makes a net loss on some investment or venture.

Such an approach can be expressed as the "P Model:' of the

chance-constrained programming problem which is formulated

us

min FEE' = 1 c jXj X ]
subject to P1{n= 1 axj < bi- -I i = 1, 2, ... , m

x O 0J = 1, 2, ... , ni,

where Z is the udisaster levelu of receipts.

J. K. Sengupta [29] has applied the distribution free

Chebyshev inequality to this problem by using an approach

18
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somewhat different than those previously reviewed in this

chapter. In his appro'",h, Sengupta uses an idea attributed

to Theil wher- there is a penalty cost associated with each

constraint. This penalty cost is only applied when thu

constraint is violated. Also, there is a penalty cost which

is applied whenever receipts are less than or equal to the

disaster level, Z. Sengupta then defines a "4ew objective

function which can be called total expected penalty costs,

thus transforming the constrained problem into an uncon-

strained minimization problem. In this approach, the de-

cision maker must be able to assign a realistic penalty cost

to each constraint.f!
To quantify this, let h be the unit penalty cost to be

applied whenever Z exceeds n = xj, and ki be the unit

penalty cost to be applied whenever aix. exceeds b,,

Sengupta assumes that the a.. are non-stochastic constants

and that the e and b are continuous random variables

defined on a non-negative range, He defines C(Xi, .0., xn)

to be the expected penalty cost associated with the original

objective function and Ci(xl, ... , X.) to be the expected

perIalty cost associated with the i-th constraint, The prob-

le :an now be expressed as

min C(x,, *o Xn) + C (Xlt ", x)

subject to x JL 0 J = 1, 2, ... , n.

The expected penalty cost associated with the i-th constraint

would be given by

(xI, ... x = ki i( - bi) f (b) dbi,

19
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where sa an fi(ba a i the probability densitywr i n =1a.J
function of the random variable b,. If bi has unknown dis-

tribution, this integral w•ould be impossible to evaluate.

However, Sengupta uses tho Chebyshev ine.quality to obtain an

upper bound. for the integral, and the bound can be expressed

as

C (xJ) seep xn) k ki(aJ - a/P

2 Ewhere ai• -Var (b 1 ) and = E(b _ -n j a Simi-
j = ijxje

la-ly one can derive an upper bound on the expected penalty

cost associated with the objective function,

C( ..x , xn) 'h o Z --) 2 ,

where = Var (E a x ) and = = , 1E"

Following the safety-first approach to chance-constrained

programming, Sengupta would then solve the following problem

min h ZOo/(M 0 -:Z)7 + = 1 ki(En a-1 x)°i /)i,

subject to xj • 0 j = , 2, ... , n.

20
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Chapter III

A Distribution Free Approach to

Chance-Constrilned Programming

In the last chapter, some of the developments in the

theory of solution techniques for the chance-constrained

programming model were reviewed. This included the intro-

duction of the concept of a joint chance-constraint. Also,

it was demonstrated how the distribution free Chebyshev

inequality can be utilized to give deterministic bounds on

probabilities which can be used in the safety-first approach

to chance-constrained programming.

To continue in this fashion, this chapter will be

concerned with the utilization of the one-sided Chebyshev

inequality to give deterministic constraints which can be

used to solve the chance-constrained programming model which

has both single and joint chance-constraints. Miller and

Wagner's development of the joint constraint requires inde-

pendence of the random variables involved, whereas the dis-

tribution free techniques developed in this chapter will

relax this restriction. The concepts outlined in this

chapter are developed from ideas given to the author by

R. A. Agnew; therefore, all credit for the development

should be given to Dr. Agnew.

Before proceeding to the development of the distribution

free techniques, one should consider the form of the one-
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sided Chebyshev inequality to be used in this development.

It is taken from Feller [16]. Given a random variable x

with E(x) = 0 and Var (x) = a , and given any t - 0, then

p[x > t] 5 ca2/(•2 + t*).

Proceeding to the development of a distribution free

deterministic equivalent program for the chance-constrained

proramming model, let (fl,V , P) be a probability space and

let lyi M yYi(xl "''' xn' W)' i = l, 2, s.e, m] be a family

of random variables from this space which are defined in

terms of the non-stochastic decision variables. Assume that

E(yi) < • for feasible xi, that E(yi) ;' is concave and

Var (y) = G2 is convex for feasible x. One must remember
iJ

that ), and a2 are functions of the decision variables,

X ...t xn. Clearly, these assumptions hold when one deals

with linear chance-constraints, With this notation in mind,

the chance-constrained programming model can be expressed as

max f(x 1 , ... , Xn)

subject to P[y. a 0] a - a i =i,2, ... , m

p = 1 [y2 :o] 3 Z - a

x 2 0 J = 1, 2, ... , n, (4)

where f is some concave function and a, a1 , *.., am are suit-

able elements of the interval (0, 1).

In this particular formulation, there are m single chance-

constraints which are also combined into one joint constraint,

The model is formulated in this fashion for ease of devel-

opment and presentation, but it 6an be generalized to handle

any number of single and joint constraints by directly

22
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applying the concepts that will be developed.

Using the one-sided Chebyshev inequality and the sub-

additivity property of the probability measure, one can

transform the chance-constrained model, (4), into the fol-

lowing deterministic equivalent model:

max f(x 1 , .a.. xn)

subject to ti i aI

>i • 0 1, 2, ... , m

:i l ti (X
xl • J = 1, 2, ... , n, (5)

where t, = oi/(olj +J1i3).**

The problem as formulated may have no feasible solution
for arbitrarily stipulated a, al, .. ,0 am. However, one can

obtain a suitable set of a's by first solving

min Z ui u

subject to ti u = 1, 2, ... , m

ji 0 0, ui 4 0

x 0 j = 1, 2, ... , n, (6)

and then putting •i=: ui* * a, ui* <. a where ui*, ... , U*

is an optimal solution of (6).

If one combines (5) and (6) into one problem and adds

variables to make the model computationally more tractible,

the deterministic equivalent chance-constrained programming

model becomes

max f(xl, ., X

**Mathematical development is contained in Appendix A.
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subject to p, wivi

V 2 >02

i i 1 1, 2,# .. m

u uit vII wi 0
x 0 - l, 29 n.

Unfortunately, the above constraints do not define a

convex region, so the problem is not a convex programming

problem. This means that any nonlinear programming algorithm

used to solve this problem may converge to only a local max-

imum and not to a global one. But fortunately, the constraints

and the objective function are dffferentiable, which means

that there is a nonlinear programming algorithm which can be

used to find a local maximum [E7]. 4Furthermore, it will be

assumed that the decision maker, who is trying to optimally

achieve his objective in an environment of uncertainty and

risk, will be satisfied with a locally optimal choice for the

decision variables x at least, until a better choice can

be found.

As mentioned previously, this model can be generalized

to handle any number of single and joint constraints. Suppose

one has the chance-constrained programming model with only

single chanc.3-constraints. The analyst would utilize the

deterministic model, (7), except he would delete the constraint

241 ul -c.
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If the model were given with only tho joint chance-constraint,

the analyst would delete the constraints

U1  ai for i = 1, 2, ... , m.Su i

Specifically, (7) can be applied to the linear chance-

constrained programming model with both single and joint

constraints. In this case, the model would be formulated as

max f(xl, ... , xn)

r=subject to PC& ajxj - bl] - 1 - a i = 1, 2, ... , m

p 1 m [E" = 1 aljxj 5 bi] • 1 - a
x >0 j = 1,2, ... , n.

Then, the yi, mi' and ci would be given by

I; n
Yi= bi J 1 aJjxj

.= E(b) E E(a)xJ, and

J= E = 1 k=1 v (aij, aik)xjXk

-2E = cov (aij, bi)xj + var (bh).

If one has estimates of the means, variances and covariances

of the random variables involved, they can be put into these

equations and substituted into (7). Moreover, if estimates

of the covariances are not known, one can use the following

bound
En (var (a)) xj 4 (var (b ))*,oij i i.=i l

& in the constraint V12 : aI2(x) to get the following constraint

vi j =1 (var (aij))* xj + (var (b,))*.

Although in some cases the Chebyshev inequality may

give a rough bound on a probability measure, it hau a

25
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desirable property that it holds regardless which probability

distribution the random variables involved may have. The

inequality is particularly useful when adapted to sums of

random variables which is the case with the linear chance-

constrained programming model. Furthermore, it has been

demonstrated that the inequality can be used to develop a

deterministic equivalent model which can solve the most gen-

eral case of the chance-constrained programming model which

has both single and joint chance-constraints.

26
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IME
Chapter IV

Chance-Constrained Input-0utput Analysis

Now that a distribution free, deterministic equivalent

model for the chance-constrained programming model has been

developed, attention will now be turned to the area where

this model will be applied--Leontief's input-output analysis.

Input-output analysis is well suited to the chance-constrained

programming approach since input-output analysis, in its

simplest form, is a linear programming problem where the

constants and coefficients of the model are random variables,

usually with unknown distributions. Therefore, the charne-

constrained programming approach will give the decision

maker everything the normal approach-to input-output analysis

gives, plus further insight into the risk and uncertainty

that the decision maker faces. Furthermore, it will enable

him to directly control some of this risk. Before proceeding

with the development of a chance-constrained, input-output

model, a few words will be said about the theory of input-

output analysis.

Input-Output Analysis

Consider an economy which has n sectors where each

sector is producing one, and only one, distinct product.

Output from any particular sector may be needed as an input

for itself and for other sectors. Furthermore, the open

27-- --- K
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model will be considered, which allows outside demand to

occur; this could be interpreted to include consumer demand,

demand generated by the government, and demand for expoirt.

Also, assume that there is a finite labor supply and that

each sector demands labor in order to produce goods. In

order to have a viable economy, total production of product

i must be greater than or equal to the total demand for

product i, which includes outside demand and the demand from

each sector. Furthermore, total demand for labor must not

exceed the total labor supply.

To quantify this, let xi be the total number of units

produced of product i. Let aj be the number of units of

product i needed to produce one unit of product J. Also,

let aoj be the number of units of labor needed to produce

one unit of product J; L represents -the total amount of labor

available in the labor market. Finally, let Di represent

the outside demand for product i. The production and labor

constraints can now be represented as

"x- = 1 ax a Di i = 1, 2, ... , n

j = jXj L.

Letting ci be the production cost of product i, the

input-output analysis model can be represented by the fol-

lowing linear program
nm cjxmin E• n, a

subject to xi - , 1 aijxj > Di i = 1, 2, ... , n

En a xi S LnJ = 1 aojj 3
xj i 0 J 11i 2,l.. n.
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This model, as formulated, can be interpreted to mean that

economic planners are attempting to minimize producetion

costs, subject to the constraints that production in each

sector exceeds total demand and that total demand for labor

does not exceed the total labor available.

'I Leontief's model is important since it recognizes that

a very considerable portion of the effort of a modern economy

is devoted to the production of intermediate goods, And the

output of intermediate goods is closely linked to the output

of final products. Therefore, a change in the level of

output of some final product can cause widespread. changes

throughout the economy in the level of production of inter-

mediate goods. In other words, input-output analysis

4 describes a national economy as a system of mutually inter-

related sectors or interdependent economic activities.

This interrelation actually consists of flows of goods and

services which directly or indirectly link all the sectors

of the economy together. Leontief's approach is particularly

important since it highlights this interdependence of the

economic sectors. Another important feature of Leontief's

model is that it is strongly dependent on empirical investi-

gation.

The model has been successfully applied to the United

States economy, and large tables have been constructed which

show how goods and services flow throughout the U. S. econ-

omy. The model can be of -reat use for economic planning in

developing nations since it can be utilized to predict the

29



dSA/5M/72-15

"Useful" production capability of that nation. In the same

light, it can be used for' planning optimal levels of econ-

omic r "owth. Furthermore, the model can be an aid for

economic planning in military mobilization problems.

Although Legntief developed the model for a large

F conomlc system, it can be readily seen that input-output

analysis can be applied to problems much smaller in scope.

The model can be applied to any organization or system that

is composed of'components which supply goqds and services to

other'components witjiin the organization or system. Fur-

thermore, these goods and services may be supplied to

dctivities outside 'the organizatioh. Clearly, this would

include large manufacturing organizations and a military

activity like the U. S. Air Force.

Baumol [5] points out two simplifying assumptions made

in'input-oUtput analysis which have come under criticism.

One is the assumption that each sector manufactures only one

homogeneous product or good. This restriction may be relaxed

somewhat by interpreting this product as a composite commod-

ity. The second and more restrictive assumption made is

that all inputs needed in the manufacturing of a unit of

output are utilized inifixed proportions. This does not

F allow the possibility of trade-offs or substitution of

inputs. ;Clearly, adoption of the chance-constrained approach

will relax this second assumption.

nMother drawback against uping input-output analysis is

that aý great amount of statistical effort must be expended
I 3
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in order to come up with timely forecasts of demand and

estimators of the technical coefficients, aij. It might be

pointed out that this statistical effort could also provide

an estimation of the variance of these estimators without

much greater effort being expended.

The Model

The chance-constrained, input-output analysis model

will now be developed, and it deviates from the usual eco-

nomic interpretation since two military units will be

considered as the economic sectors. These will be an air-

lift command which will represent sector I and a logistics

command representing sector II. Now sector I, the airlift

command, provides a service whose unit of measure is a ton

of materiel/personnel transported. Sector I provides this

service to itself, to sector II, and to other military

activities. Likewise, sector II provides a product whose

unit of measure is a ton of materiel supplied. Again it

uses the product itself, and the product is used by sector I

and by other military activities.

To quantify this problem, let x1 represent the total

amount of airlift support provided by sector I. Let a11 be

the random variable which represents the amount of airlift

support required to supply one ton of materiel/personnel

transported, and a12 represents the random amount of airlift

support needed to provide one ton of materiel supplied. Let

D1 represent the demand for airlift support by all other

V 31
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military activities. Similarly, let a 2 1 , a2 2 , and D2 be the

random demands for logistic support, and let x2 be the total

amount of logistic support provided by sector IH. To

restrict the model, assume that x and x are non-stochastic

decision variables. This is not too an unrealistic assump-

tion if one interprets xI and x2 to be the upper bound on

the airlift and logistic support that decision makers are

willing to provide. Furthermore, let cI and a2 be the random

unit cost In thousands of dollars of airlift support and

logistic support. Let 100 be the number of manhours required

to provide one ton nf materiel/personnel transported, 50 be

the number of manhours required to provide one ton of mater-

iel supplied, and 650,000 the total number of manhours

available to both the airlift command and the logistics

command. Finally, assume that decision makers require that

the demand for airlift support will be met with at least

probability .95; also, they require that the demand for

logistic support will be met with at least probability .9.

Lastly, decision makers require that the total demand for

both. airlift support and logistic support will be met with

at least probability .9.

The chance-constrained, input-output analysis model is

now given by

min E(c 1x + o2 x 2 )

subject to P[(l - a11 )c1 - a1 2 x 2 L D1J 3 .95

P[-a 2 1 xI + (I - a 2 2 )x 2 • D2 1 • .9
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F1-a1 ) a] x [Dl11 121 >1  .91~SP 
x' D

S-a21 1 -a2

1QO001 + 50x2 < 650,000

variale:, ivsX:, x2 valO,

where the objective is taken to be the minimization of( expected costs.

! Suppose statistical analysis gives the following values

for estimators of the mean and variancc of the above random

S~ variables.

Random Variable Mean Variance

35 5
e2 25 3

I all ,25 .0025

a 1 2  3 .0,J09

a .15 .0001a21• _

a 2 2  .2 .0004

01 1000 10,000

D)2 1500 12,000,

and the covariances are given by

C =. -. 0009
all, a 1 2

o = -. 0001.
a 2 1 , a 2 2

All o.her covariances are zero.

Followi.g the non-stochastic approach to input-output

analysis, Department of Defense planners would take the esti-

mators of the means of the random variables, and solve the

following linear programming model.
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min 35xI + 25x,

r subject to .75xl - .3x 2 - 1000

o-.15x + Sxg lp 1500
X xI + .5X 2 ý5 6500

l, x2 Z 0

Solving thin problem, one obtains the solution x= 2252.252

and x2  229?.297, which gives total, expected Qost of

$136,261,300. Not much can be said about this policy since

there is no measure of the risk associated with its adoption.

Application of the Chebyshev inequality gives zero as the

lower bound of tha probability that the total demand for

airlift support will be met. Likewise, zero is the lower

bound of the probability that the demand for logistic support

will be met. Such a policy should not have much appeal to

decision makers since they are faced.with an undetermined

amount of risk.

Using the estimates, the deterministic equivalenb for

the chance-oonstrained, input-output model is given by

min 35xI + 25x 2

subject to .75xI - .3x 2 1-000 - W 1v a 0

-. 15xI + .8x - 1500 - w2 v2 ? 0

v1  - .0025x%2 - .0009x. 2 + .009X1x2- - 10000 0

v2 2 - - .0004x22 + 0001x x 2 - 12000 • 0
Ul (WlI + 1) - 1 0
u2(w 2  + 1) - 1 • 0

.0• - u) 0

.1 - u2 • 0
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. -2

1 X ~2: 065o0 - xI -2

XI, X2 , Uf U20 V10 V2, 2 1 5 0
Using Fiacco and McCormick's nonlinear programming tIlgorithm

[17] to solve this problem*, one gets x1 = 3909.8 and

x2 3310.4 as the solution which gives $219,603,000 as the

expected cost. What else can be said about establishing

this level for the decision ?ariables? One can aay that the

probability that the total demand for airlift support will

De met is at least .95, and the probability that the total

demand for logistic support will be met is at least .9 (in

fact, .t is at least .95), and the probability that total

demand is met is at least .9. Clearly, much of the uncer-

tainty associated with the previous policy has been eliminated.

Since some of the advantages of using the chance-

constrained model have been stated, the major disadvantage

must also be pointed out. One desirable feature of the

Chebyshev inequality is that it holds regardless of the

distribution of the random variables being measured. But

this feature can clearly work against anyone using it in the

above model, since it can induce a decision maker to select

a more cautious policy than one he might normally select.

This action would most certainly increase his costs. To see

this, one should remember that the Chebyshev inequality is

uvd to obtain a lower bound on the probability that some

*See Appendix B.
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particular constraint be met. If this lower bound is set

equal to some appropriate number, say .95 for example, it

is quite possible that the true measure of the probability

is higher than this bound. In fact, the true probability

could be extremely close to one; it is in the example, if

one assumes that each constraint has an underlying normal

distribution.

This undesirable feature must be considered the price

one must pay for not knowing the distributions of the random

variables associated with the model. As with any model, it

does not answer all questions that a decision maker might

have concerning the uncerta'inty he faces; however, it cer-

tainly gives him insight into his problems. Also, the model

may be reformulated to be of greater use to the decision

maker. Such a formulation could be

min uI + u2

subject to P[(1 - all)X 1 - al 2x2  D] Ž 1 - U

P-a + ( - a 2 2 )x 2 • D ] Ž 1 u 2

(1 - all) -al2 1 FD
11) -121lu I

-a 2 1 (1- a 2 2 )j LD 1 2

P[c 1 x1 + c2 x2  c cB] > 1 -

xI + .5x 2 5 6500

x1 , x 2 , u., u 2 Z o,

where the random variables are as previously defined, and cB

is the budgeted cost ceiling placed on the model. This model

has the interpretation that one is attempting to minimize the

risk of not meeting total demand, subject to the constraint

36
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that the probability that total costs do not exceed the

budgeted ceiling, is greater than 1 -I. Clearly, this

model would be of great value to the decision maker since he

is gotting the greatest amount of risk aversion for each

dollar he spends, plus he is given an upper bound on the

measure of the risk that he must face by adopting this pol-

icy.

It has been demonstrated that the chance-constrained

programming model can be applied to the input-output analysis

model. Clearly, a chance-constrained, input-output analysis

model could be develojped for the U. S. Air Force and could

be used for budgeting and force structure problems. However,

a competent analyst might ask whether the application of

chance-constrained programming to input-output analysis is

contrived. Or he might ask whether -the insights gained by

using the model are worth the computational burdens that the

model places on him. To answer these questions, he must

consider the advantages of using the model. One major

advantage is that is forces the decision maker to recognize

the risk and uncertainty that he faces, and it gives him a

direct control over some of this risk. Furthermore, the

model is "distribution free" since the analystneed. not know

the probability distribution of the random variables involved;

he only need know estimations of the mean and variance of

each random variable. The model can readily be used for

budgeting or personnel allocation problems. Finally, the

model is particularly applicable for optimal economic

S37
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planning in organizations whioh are comprised of interrelated

groups, where these groups supply goods and services to each
other and to activities outside the organization. In this

light, chance-constrained, input-output analysis can be

considered as mathernetical programming from the systems

nmsnagement point of view.
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Appendix A

Mathematical Development of
Deemi'n~istc Constraints

weeSuppose one is given the chance-constraint

P[a i=i b 01] 1 - ail

where Y, has a known probability distribution with mean

S= i(Xl ' ) and variance a = (X1, ... , x).

The problem is to develop a deterministic equivalent con-

straint for the above probabilistic constraint.

PLO a-X 5 b1  = PEcy-_ 03

This probabilistic constraint holds if and only if

-(A - a1 ) -a1 > a

where F(.) is the cumulative distribution function of the

random variable (y, " M1 )/01 " This deterministic constraint

can be rendered more tractible by adding a variable to give

Mi + Kl -I vi !6 0

vi a 12> 0v. i 0.

Svi _>0.

Use of the Chebyshev Ineguality to
Give Deterministic Equivalent
Constraints for Both Single and
Joint Chance-Constraints

Suppose one is given the single and joint chance-

constraints
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P[Yi -> 1 1 ai i= it 2, . .. , m

Pi= 1 (Y, i 0) 1 -a,

where E(yi) =M and Var (yi) = a.' Consider

py, -e o0 1 - P[yl < 0] = 1 - )i - Yi > )I,]

But the one-sided Chebyshev inequality gives, the following

S~bound

SP[p - yj > pil 5 cY•/(Gi' + u,'), provided pi ; 0.

This implies that

p[Y O] 0 - I +

The constraint P[yj Ol > 1 - i holds if and' only If

ua 1/(G• + 11 1 5I" Now consider the joint constraint

P lim = 1 -= 1 P 1 M (Y < 0)

II

=1-P Ur =1 P > P 1-x li Y ~

which follows from the subadditivity pr9perty of any proba-

bility measure. Again using the Chebyshev inequality one has

P fmi (Y, Z 0) L> 1 - 'Eml G 1 /(ai2 +).lj) >1i a

The constraint holds if and only if

ii= 1 ci/(l + Mi) <-a

Utilizing these inequalities, the deterministic equivalent

constraints can be written as

i - l i = 1, 2, ... , m.

MjI Z 0

w E1 t -5 a,
where,, t•. -- fcf+ )II.
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Appendix B

Nonlinear Programming

This section outlines the nonlinear programming

algorithm used by the author to solve the deterministic

I equivalent, chance-constrained, input-output analysis model

in chapter IV. It is Fiacco and MbCormick's interior point,

u-nconstrained algorithmý To understand its use, consider a

rnonlinear programming model which can be formulated as

SMin h(x 1, ... , xn)*Sn.

subject tic gi(xl, .. , x 0) : i= i, 2, ... , m.

in their interi6r point algorithm, Fiacco and McCormick

transform the constrained problem into an unconstrained, mini-

rmization problem by using some transformation of the form

!W(Xl, ... , xn, r) =h(xl, ... , xn
n n

Il + s (r) I I(gi(xl , Xn))j

where s(r) is some function of r which has the property

s(r) - 0 as r - 0, and I(gi(xl, ... , xn)) is some function

of the i-th constraint which has the property I(g,(xl, *ee, Xn))

-0 Go as gi (x1, .. x) -0. In solving the problem in chapter

IV, the functions, !s and I. were taken as

s(r) = r, and I(gi(xl ... ,X = -In gi(x1 , ... , 2n).

*If 6ne's' objective is max f(xl, .. • .xn, one must define
h(Xl, ... , xn) = - t(xl, ... , xn) in order to use Fiacco
and McCormick's algorithm.
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This gives the problem
,tin W(xI, .. ,x , r) h(xl seat Xn

4n
-r i = i n [gl(X, ... , Xn)].

Basically, the method of solution is to solve this problem

for arbitrary positive r, decrease r (but keeping it positive)

and solve the problem again. Continuing in this fashion,

one will generate a s3equence of values

[xi(k)] for i = l, 2, ... , n. If r(k) - 0 as k - c, then
(k)

xi - xi* as k - ®, i = 1, 2, ... , n, where x.* is the

i-th element of the vector x* which is a point that will give

a local minimum to the consLrained problem.

Fiacco and McCormick prove that if the functions

f) g1, "'') 6m are continuous and if one follows the above

procedure in minimizing W(x,, ... , x., r), the sequence of

solutions will converge to a locally optimal vector, x*, for

the constrtined problem

min h(Xl, ... , Xn)

subject to gi(xl, ... , xn) n 0 i = l, 2, ... , m

provided a local minimum exists. If h(xl, ... , Xn) is also

a convex function and gi(xl, ... , xn) is a concave function,

i = 1, 2, ... , m, the convergence is global. Unfortunately,

this is not the case for the problem in chapter IV.

The Algorithm

Expressing the constrained problem as the following

unconstrained function
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W(xl..., x, r) = h(xl, ... , xn)

r Fm in g.l , x
"i= (X "' n)

the solution to the constrained problem is obtained by using

the algorithm outlined below.

Step 1. An initial vector x(0) n(0) (0)is
chosen such that gi > 0 for i

> o 1, 2, .. ,m.

Step 2. An initial value for r1 is chosen, in this case

r= 1 is used.

Step 3. Using x(k 1 1) and rk, the function W(xl, .... Xn rk)•, (k)
is minimized over n space giving x . The steepest

descent algorithm is utilized for this purpose,

although the Newton method could also be used.

However, with the Newton method, one must compute

the Hessian matrix of W(xl, ... , Xn, r), and this

becomes impractical as the number of variables and

the number of constraints increases.

Step 4. Terminate computations if the new solution is

acceptable; if not, continue.

Step 5. Select a new value for rk + 1 rk +1= rk/2 is

used in the problem.

Step 6. Using the new values for (x,, ... , x.) and r, return

to step 3.

Minimizing a Function Using the
Steepest Descent Method

The steepest descent algorithm which can be used to

minimize an unconstrained function is an iterative technique

which utilizes only the first partial derivatives. Suppose
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one desires to minimize the function W(x, rk) with respect

to the vector x while holding r, fixedý Using the steepest

descent method, one selects 7n arbi.trary vector x and

computesVW(x(a), ru), the gradient irector of W with respect

to the ven'tor x; then a new value for -he vector x is foun.

by using the iterative relation
U~ + 1) (i) - • wx (1, rk),

where X is the smallest non-negative value which locally

minimizes W along -VW(x(i), rk) starting from x(i). is

IT usually found by finding an upper and lower bound on it and

then shrinking the interval of these bounds until they

converge to the desired point.

The algoritlim is terminated when the norm of the gra-

dienb vector Is suitably small.
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